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Molecular (atomistic) dynamics

Energy 𝐸[𝐫1, 𝐫2, … ]

Force 𝐟𝑖 = −𝛻𝑖𝐸

Dynamics 𝑚
𝑑2𝐫𝑖
𝑑𝑡2

= 𝐟𝑖

In principle, requires 
a quantum 
mechanical 
calculation at each
time step!

Proteins Materials

Liquids



The Electronic Schrödinger Equation (QM)

H

e
H

e

Molecular mechanics/Classical force field

e kinetic

e = electron 
n = nucleushttps://en.wikipedia.org/wiki/Force_field_(chemistry)

Pros: 
• Computationally efficient
• Accurate on systems in fitting set

Cons:
• Not very transferable
• Non-reactive
• Difficult reparameterization 

Pros: 
• Transferable
• Accurate

Cons:
• Computationally demanding
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Semi-empirical QM

DFT & HF

CCSD(T) 

Cost

O(N1)                                            O(N2)                                       O(N3) O(N7) 

Traditional potentials



A potential solution
Solution: Develop an empirical potential that is accurate, fast and 

parametrizes itself

❑Machine learning provides methods that fit this need

❑ Prior neural network potentials* (NNP) for organic molecules and materials…

➢ are trained to specific molecules or phases of a material

➢ are non-transferable 

❑ Our goal: build general and accurate ML potentials

Combine big data and deep learning concepts and a new molecular 

representation to produce accurate, transferable, and extensible NNPs.

*Behler, J.; Angew. Chemie Int. Ed. 2017, 56 (42), 12828–12840.
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Where does ML fit?

ML Potentials



Design principles for ML potentials

Mapping from coordinates R → Energy (& Forces) but with no a-priori functional form

• Fast, accurate, and reproducible

• Reactive

• No “atom typing” required

• Conserves energy (in MD)

• Extensible to new, larger systems of atoms

• Highly automated parametrization

• Systematically improvable

Ԧ𝑟, 𝑍

𝐸

𝑓 Ԧ𝑟, 𝑍

Coordinates and 
atomic numbers

Mapping Function

Energies

Ԧ𝐹 = −∇𝐸Forces



Machine learning basics

Types of tasks

• Regression

• Classification

Machine 
Learning

Inputs Labels

Prediction

Feedback

A few applications

• Image recognition

• Social media moderation

• Stock market prediction

Supervised Learning

Inputs = 𝒙𝟎, 𝒙𝟏, 𝒙𝟐, … , 𝒙𝑵

Labels = 𝒚𝟎, 𝒚𝟏, 𝒚𝟐, … , 𝒚𝑵

Training dataset for supervised learning

…



𝐶 =
1

𝑀


𝑗

𝑀

𝑝𝑖 −𝐴𝑖
2

… … … … 𝑝𝑖

Deep Learning
neural networks (NN)

𝑎1
2 = 𝑓 

𝑖=1

𝑁1

𝑤2𝑖
1 𝑎𝑖

1 + 𝑏1
2𝑤11

0 𝑓 𝑥 = tanh 𝑥



ANAKIN-ME (ANI) potentials

JS Smith, O Isayev, AE Roitberg, Chem. Sci., 2017, 8, 3192-3203

Hierarchal Interacting Particle 
Neural Networks (HIP-NN)

Atoms-in-molecule neural network (AIM-Net)

R Zubatyuk, JS Smith, J Leszczynski, O Isayev 
https://doi.org/10.26434/chemrxiv.7151435.v2 2018

N Lubbers, JS Smith, K Barros 
J. Chem. Phys., 2018, 148, 241715

Our work on developing 

ML potentials



Molecular Representation

R = 5 A

R = 5 A

R = 5 A

R = 5 A

R = 5 A
R = 5 A

J. Behler and M. Parrinello, Phys. Rev. Lett., 2007, 98, 146401.

𝐸 =

𝑖

N

𝐸𝑖

Energy is given by 
a sum over atomic 

contributions

…

𝐸𝐴𝑁𝐼
𝑖 ………

R = 5 A



Descriptors for the ANI ML-based potential

𝑓𝐶 𝑅𝑖𝑗 = ൞
0.5 × cos

𝜋𝑅𝑖𝑗

𝑅𝐶
+ 0.5 for 𝑅𝑖𝑗 ≤ 𝑅𝐶

0.0 for 𝑅𝑖𝑗 > 𝑅𝐶

Cutoff function

𝐺𝑚
𝑅 = 

𝑗≠𝑖

All Atoms

𝑒−𝜂 𝑅𝑖𝑗−𝑅𝑆
2

𝑓𝐶 𝑅𝑖𝑗

Radial Descriptors

𝐺𝑚
𝐴mod = 21−𝜁 

𝑗,𝑘≠𝑖

All Atoms

1 + cos 𝜃𝑖𝑗𝑘 − 𝜃𝑠
𝜁
𝑒𝑥𝑝 −𝜂

𝑅𝑖𝑗
2 + 𝑅𝑖𝑘

2

2
− 𝑅𝑆

2

𝑓𝐶 𝑅𝑖𝑗 𝑓𝐶 𝑅𝑖𝑘

Angular descriptors

0 1 2 3 4 5 6 7

…

𝐸𝐴𝑁𝐼
𝑖

…

…

…

Concatenate
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D(H1) D(H2) D(H1)

D(H2) D(O1) D(O1)

A(H1;H2) A(O1;H2) A(O1;H1)

D = distance to atom
A = Angel between atoms

J Behler and M Parrinello, Phys. Rev. Lett., 2007, 98, 146401

JS Smith, O Isayev, AE Roitberg, Chem. Sci., 2017, 8, 3192-3203
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Permutation

Energy must be invariant 

with respect to:



𝑑𝐶

𝑑𝑤
Update network

parameters

Compute 

cost gradient
𝐸𝐴𝑁𝐼
𝑄𝑀 =

𝑖

N

𝐸𝐴𝑁𝐼
𝑖,𝑋

𝐶 =
1

𝑀


𝑗

𝑀

𝐸𝐴𝑁𝐼,𝑗
𝑄𝑀

− 𝐸𝑗
𝑄𝑀

2

ANI potential training

…
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…
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…

Millions of 

QM 

energies 

from small 

molecules 

(𝐸𝑗
𝐷𝐹𝑇)

Evaluate M molecules 

with N atoms
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𝐸𝐴𝑁𝐼 =

𝑖

N

𝐸𝐴𝑁𝐼
𝑖

𝐸𝐴𝑁𝐼
𝑖,𝐶

Ԧ𝐹𝐴𝑁𝐼 = −∇𝐸𝐴𝑁𝐼

Molecular 

Dynamics

Torsion 

Profiles

ANI potential application



Ensemble 
disagreement 

can drive 
data 

generation

Can we predict when the model is wrong?

Good data 
coverage

Bad data 
coverage

QM



Active Learning - The Big Picture
An automated and self-consistent data generation framework

Ensemble of ANI networks

Molecule Sampling
(e.g. GDB small molecule database, small 

peptides, drug like molecules)

Structure Pools

Check ensemble 
disagreement

Compute 
Cluster

ANI-1x Dataset
(i.e. energies, 

forces, dipoles)

Train network 
ensemble

Computations with QM
JS Smith, et al.; The Journal of Chemical 

Physics, (2018), 148 (24), 241733

Non-equilibrium 
Conformational 

sampler

New test 
data



ANI-MD Benchmark

128 frames from 1ns trajectories @ 300K for each:
DrugBank and Tripeptide Benchmarks

Testing transferability and extensibility

Chignolin

Trp-cage

Various drug molecule

JS Smith, et al.; The Journal of Chemical 
Physics, (2018), 148 (24), 241733



Active-learning results vs. random sampling

Active learning progression

Relative E and F RMSE comparison

ANI-1 ANI-1x

Datapoints 22M 5M

Dataset size comparison

JS Smith, et al.; The Journal of Chemical 
Physics, (2018), 148 (24), 241733



Transferring knowledge from DFT to CCSD(T) 

• Subsample 10% of ANI-
1x training data (0.5M 
of 5M)

• Recompute 
CCSD(T)/CBS level

• 340k parameters fixed, 
re-train 60k

• 107 faster than DFT

𝐸ANI−1x
DFT

ANI-1x DFT 
dataset

(5M datapoints)

Train network

Copy ANI-1x DFT 
pretrained parameters

…

…

CCSD(T)*/CBS 
(CC) dataset

(500k datapoints)

Retrain network

Fixed

Fixed
…

…

…
…

…

…

…
…

𝐸ANI−1ccx
CC

Transfer 
Learning

JS Smith, et al.
https://doi.org/10.26434/chemrxiv.6744440.v1
(2018)

https://doi.org/10.26434/chemrxiv.6744440.v1


• New ANI-1ccx model outperforms DFT on 
reaction energies and torsional profiles

• A 24 core hours calculation for CCSD(T)/CBS 
takes 2 GPU microseconds for ANI-1ccx

Outsmarting Quantum Chemistry Through Transfer Learning
JS Smith, B Nebgen, R Zubatyuk, N Lubbers, C Devereux, K Barros, S Tretiak, O Isayev, A Roitberg
https://doi.org/10.26434/chemrxiv.6744440.v1 2018 (under review at Nat. Comm.)



Machine learning for molecular dynamics with strongly correlated electrons
Hidemaro Suwa, Justin S. Smith, Nicholas Lubbers, Cristian D. Batista, Gia-Wei Chern, Kipton Barros
https://arxiv.org/abs/1811.01914 2018 (under review at Phys. Rev. Lett.)

Trained an ML model to a toy 
system with variable Hubbard 
U through the Gutzwiller
approximation

Accurately reproduces a Mott 
transition on systems of 2700 
atoms.

Metal Insulator



ML metal potentials with active learning!

Los Alamos Team

Benjamin Nebgen – T-1

Kipton Barros – T-1

Saryu Fensin – MST-8

Tim Germann – T-1

Leonid Burakovsky – T-1

Nicholas Lubbers – CCS-3

Sergei Tretiak – T-1

Our approach: minimize use of expert knowledge for maximum generality

https://courses.lumenlearning.com/cheminter/chapter/crystal-structures-of-metals/

Crystal structures Defects

Melts

Amorphous solid

Extreme conditions

ML Potential

Energy 𝐸[𝐫1, 𝐫2, … ]

Force 𝐟𝑖 = −𝛻𝑖𝐸
Applications

𝑚
𝑑2𝐫𝑖
𝑑𝑡2

= 𝐟𝑖



The General AL Framework for ML potentials

Design Principles:

• Fully autonomous

• Interchangeable QM

• Interchangeable ML

• Assortment of built-in 
sampling methods

• Built-in testing suite

• Capable of scaling to 
1000s of nodes

Retrain ML models on 
all available DFT data

Use new potentials to run 
MD, freezing from liquid 
to new solid structures

Run new DFT calculations 
whenever ML is uncertain 
about force predictions

A codebase for active learning on large GPU clusters (e.g. Sierra or Summit)

Benjamin NebgenKipton Barros



Open science access on LLNL’s 
Sierra super computer

Application of active learning to 
build ML potentials

• Build a general active learning 
framework

• Framework interface with 
Quantum Espresso (QE) for DFT

• In 2 months we ran 10-20k DFT 
calculations on systems with 50-
200 metal atoms

• Elements explored Al, Sn, Ga, Cu

• We are still evaluating results



= training data

How should we sample to build a general model?

 np y i a   on iguration 

  treme  ondition 

 iquid   a e

 ry ta    a e

All possible configurations for a metal

Typical sampling space for 
force fields and existing ML 

potentials

Where extreme 
conditions and rare 

events exist (e.g. shock 
simulations) 

Linfeng Zhang, De-Ye Lin, Han Wang, Roberto Car, 

and Weinan E, Active Learning of Uniformly Accurate 

Inter-atomic Potentials for Materials Simulation,

[arXiv:1810.11890]

Recent published work



How should we sample to build a general model?

 np y i a   on iguration 

  treme  ondition 

 iquid   a e

 ry ta    a e
 andom
 i order

All possible configurations for a metal

Can we learn the physics of 
crystals from sampling here?

LLNL Sierra
(#2 on TOP500 list)

Thanks for the open 
science early access 

allocation!



Sampling techniques

Disorder Space group1

• Configuration selected by ML

• Minimum atomic distances restrained

• Density kept within a set range

• Random a, b, c lattice constant

• Box size kept minimal

Initial cell

Check ensemble 
disagreement (σ)

N steps ML driven NVT MD Simulation

Is runtime < 
max runtime?

Is σ < max σ?
Terminate: Keep 

highest σ

Run QM for new 
data

No

No

Yes
Yes

Crystal2

Technique 1 Technique 2 Technique 3

Selected samplingRandom sampling

Triclinic

Orthorhombic
Hexagonal

Cubic

1) Images from: https://en.wikipedia.org/wiki/Space_group
2) Images from: https://homepage.univie.ac.at/michael.leitner/lattice/index.html

• Crystal selected by 
human

• Random perturbation 
by 0.25A

• Random a, b, c lattice 
constant

Active learning molecular dynamics sampling

Random starting and ending temperature



Application on Aluminum (Al)!

DISCLAIMER!

We trained to DFT and are about to 
show results comparing to experiment.



Select crystal vs. random 
disorder MD sampling for Al

= training data

Linfeng Zhang, De-Ye Lin, Han Wang, Roberto Car, and Weinan E, 

Active Learning of Uniformly Accurate Inter-atomic Potentials for 

Materials Simulation, [arXiv:1810.11890]

Crystals chosen based on 
human knowledge

(previous literature)

No human knowledge used in sampling
Sampling technique 1 only: Disorder

(our current work)



RDF of liquid Al using our ML potential

Exp Data: http://res.tagen.tohoku.ac.jp/~waseda/scm/LIQ/periodic_table.html

• 125ps of NPT for equilibration
• 125ps of NVT at equilibrated density
• 2048 atoms system
• Trained to DFT (PBE)
• Density vs exp ~11% off (on the level of typical DFT error)

ANI-Al



Application on Tin (Sn)!

𝜷-Sn to 𝜶-Sn phase transition



Random disorder MD sampling for Sn
Active learning on Sn w/o any human intervention



Technique 3

Error on α-Sn with AL progress

Technique 2

Active learning “Generation”

Training using random 

disordered, liquid, and 

quenched configurations

Random selection 230 

crystallographic space 

group configurations

Selected a-Sn 

configurations

Technique 1



Including hand picked crystal structures

Alpha Sn requires explicit alpha fitting



Good agreement with DFT for crystals AND barriers



Liquid Sn RDFs at variable temperatures

Exp data: T. Itami, S. Munejiri, T. Masaki, H. Aoki, Y. Ishii, T. Kamiyama, Y. Senda, F. Shimojo, and K. Hoshino Phys. Rev. B 67, 064201 (2003)

• 125ps of NPT for equilibration
• 125ps of NVT at equilibrated density
• 1728 atoms system
• Trained to DFT (PBE)
• Density vs exp ~9% off (on the level of typical DFT error)



How different sampling methods perform

Training Data Testing Data
Energy RMSE 
(meV/atom)

Force RMSE (eV/A)

Crystal Crystal 3.6 0.04

Random Crystal 13.7 (17.7/8.3) 0.05 (0.05/0.04)

Random + Crystal Crystal 4.4 0.03

Datasets:
Random = Random configurations and random space groups
Crystal = Selected randomly perturbed crystals using human knowledge

Training Data Testing Data
Energy RMSE 
(meV/atom)

Force RMSE (eV/A)

Crystal Random 250.1 1.88

Random Random 5.9 0.09

Random + Crystal Random 5.1 0.09

Testing on Crystals

Testing on Random

Energy RMSE 
(meV/atom)

Force RMSE 
(eV/A)

44.0 0.97

Typical MEAM fitness on Crystals



Conclusion and Outlook
Conclusions
• Sampling matters in dynamical studies

• Better data makes a better ML potential

• Active learning methods are required for better data

• Current models may be missing the ability to describe physics in some metals

• Test set results for atomistic ML models can be misleading

Opportunities
• Continue to develop better sampling techniques for metals and molecules

• Discover better uncertainty quantification methods for active learning

• Apply models to gain physical insights

• Recover long range interactions through combined charge prediction and coulomb models



Thank you!

LLNL Sierra
(#2 on TOP500 list)

Thanks for the open 
science early access 

allocation!





RDFs at variable pressures

Exp data: T. Narushima, T. Hattori, T. Kinoshita, A. Hinzmann, and K. Tsuji Phys. Rev. B 76, 104204 (2007)



Random disorder (no human knowledge) sampling technique

Random atom 
placement

AL MD Sampling with 
current ML potential

• Minimum atomic 
distances restrained

• Density kept within a 
set range

• Random a, b, c 
lattice constant

• Box size kept minial

• NVT dynamics

• Randomized starting 
and ending 
temperature

• Simulation ends with 
high ensemble 
disagreement



CCSD(T)/CBS accurate data generation

ANI-1x
DFT dataset
(5M datapoints)

Active-learning 
based subsampling

Generate 
CCSD(T)/CBS 
accurate data

4x 
iterations

ANI-1ccx
CC dataset

(500k datapoints)

Method Avg. Time/data point

CCSD(T) 24h

DFT 6m

ANI-1ccx 2µs



Hydrocarbon reaction energy benchmark

Reference data: Peverati, R.; Zhao, Y.; Truhlar, D. G., J. Phys. Chem. Lett. 2011, 2 (16), 1991–1997.

Examples

1

2



Organic reaction energy benchmark

3)

4)

1)

2)

5)

Reference data: Peverati, R.; Zhao, Y.; Truhlar, D. G., J. Phys. Chem. Lett. 2011, 2 (16), 1991–1997.



Benchmark from: Sellers, B. D.; James, N. C.; Gobbi, A., J. Chem. Inf. Model. 2017, 57 (6), 1265–1275.



Atomic environment description

O

H

O

H

How do we represent the 
chemical environment of 
this oxygen?

HH

O

100.0o



Descriptors for the ANI ML-based potential
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